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FOREWORD

The problem which the Jet Propulsion Laboratory asked the Mathematics
Clinic at the Claremont Graduate School to consider was twofold in character.
In essence it consisted of the following:

(a) given specified mathematical models of the MOSFET device to

extract, from data supplied by J.P.L., the optimal values of

the model-dependent parameters;

(b) to assess the sensitivity of the several models to variations

of the parameters from their optimal values.
This report describes the approach used, and the conclusions reached, by the
Clinic in tackling these two questions. In the event, we confined ourselves
to just three MOSFET models, all one-dimensional, and in one of which dif-
fusion (as well as convection) currents are taken into account. Although
we feel that significant progress has been made as regards the tasks (a)
and (b) it is also our view that much still remains to be done for a fully
comprehensive and systematic study.

It is a pleasure to thank all the individua}s involved in the successful
operation of the Clinic; the student members of the team for their persever-
ance when difficulties, often mystifying, occurred; Mike Robkin, second
year Harvey.Mudd College student, who was employed by the Clinic to carry
out the bulk of the computing; to Professor Mario Martelli, the Faculty Con-
sultant in the secoﬁd semester, for his interest, inspiration and enthusiasm;
to Professor Hedtey Morris, who visited for a short time and whose 1984

Summer Clinic Report (in conjunction with Richard‘Everson) saerved as the



basis of the work of our Clinic; to Professor El1is Cumberbatch who
organised the-creation of the C(1inic; to Joy Marshall, the Mathematics
Clinic secretary, for patient typing of unfémiliar, often indecipherable
and seemingly endless mathematics; and last, but not least, to Cesar Pina,
the liaison link with J.P.L., for his consistent help throughout the year
and constant interest in the progress of the work.
A listing of all the programs and subroutines used by the Clinic

has been produced as a supplement to this report and is available, upon
request, to

Mathematics Clinic

Claremont Graduate School

Claremont, California 91711.
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INTRODUCTION

Chapter 1
The device known as the metal-oxide-semiconductor-field-effect-tran-

sistor, or MOSFET, is described in detail in many places. (See e.g. Sze
(1981), Morris & Everson (1984)). Briefly, it consists of doped semtcon-
ducting material (silicon) to which are connected four terminals (see
Figure 1) at the source, drain, bulk substrate and gate. The gate is
separated from the main body of the device by a layer of non-conducting
material such as silicon dioxide. The silicon has a doping profile,
which means that it ﬁas been implanted within its crystal structure with
impurity atoms of other elements. In this way we suppose that it has

been made ‘p-type' (by implanting, for example, with boron) in the bulk
material substrate and lightly 'n-type' (doped, for example, with phos-
phorus) in the regions near the source and drain. Then under a sufficient-
ly positive voltage VGS (relative to the source) applied at the gate, an
n-type inversion channel will be created in the silicon along which a
drain current ID flows when the drain voltage VDS is sufficiently positive
i.e. above some threshold value with respect to the source. The manner
in which ID depends on VDS is illustrated in Figure 2 where typical
curves are sketched for given fixed values of VGS' Such curves can be
obtained experimentally over a range of MOSFETs of different sizes and
properties with good accuracy. The main features consist of a near
Tinear growth of current with VDS in the early stages, during which the

MOSFET acts as a linear amplifier, followed by a rapid change to a
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Figure 1
Sketch of n-channel MOSFET
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Figure 2

Typical ID-VDs curves for an n-channel MOSFET;
VGS in volts.



domain in which ID is nearly constant as vDS increases. Subsequently,
the material breaks down electrically and there is a final increase of
ID at very large VDS (the avalanche region).
. There have been developed in recent years many attempts at modelling
mathematically the physical processes that occur in MOSFET operation.
Such processes invalve the appropriate Maxwell equation for the electro-
static potential ¢ , the methods of statistical mechanics to express
charge densities in terms of ¢ ,the Einstein relations to simplify the
diffusion currents and Gauss's law to formulate an expression for the
'cufrént along the channel. This clinic is closely associated with the
analysis of such models, which suffer from the disadvantage that many of
the physical parameters which enter into their construction cannot be
measured, or even defined, with any degree of certainty. Examples of
these parameters 5re the length and width of the channel, the mobility
of the carriers within the channel and the degree of doping of the semi-
conductor: the small dimensions of MOSFETs renders the experimental
determination of such quantities most imprecise. Consequently they must
be deduced in an indirect manner and it is the principal objective of our
report to describe a mathematical and'numerical method by which this
process can be carried out.

Thus, the 'fit' of a particular model to given data (as plotted on
a diagram like that drawn in Figure 2) is optimized with respect to the
parameters that the model contains. In this way values are obtained
(or 'extracted') for the unknown parameters present in the model. The

data is provided by JPL and consists of sets of measurements of ID over



a range of values of vDS for specified values of vGS and the substrate
bias voltage VBS‘ Once reliable parameter values are known they may be
incorporated'within circuit simulation programs (see e.g. Viadimirescu
and Liu (1980)) to predict behaviour in circuit design. A secondary ob-
jective is then concerned with the sensitivity of a model with respect
to its parameters. For example, if a particular parameter is changed
from its optimal value by, say 10%, how do the resulting ID-VDS curves
deviate from the optimal one?

The MOSFET models that we examine are all one-dimensional models
which assume that changes take place much more rapidly across the
channel than in directions parallel to it. Thus the expressions for the
current are derived on the basis of the 'slowly-varying channel' approx-
imation and we should expect the theory to be more accurate for longer,
wider MOSFETs. In fact, the data that we use is for MOSFETs of Tength
from 1.2 uMs to 24 uMs and width from 2.5 uMs to 24 1Ms. An interesting
question is to determine the variation in accuracy obtained by the models
over the different sizes of device. Unfortunately, the particular data
sets provided do not permit a fully systematic study of this behaviour for
different lengths of MOSFET of fixed width, and vice versa. However, the
general trend can be ascertained and some comments in this connection are
made in chapters 4 and 5.

The most straightforward of the models neglects diffusion currents
compared with the drift currents and the derivation is described in Morris
and Everson (1984). There are two Qariants of this model which we have
tested against the data and they differ only in the form assumed for the

expressions defining the effective mobility and the effective length of



the channel. The details are given in Chapter 2 and we refer to these
models as the Ihantola model and the Spice 2 model. The latter is in a
form which is suitable for use in the Spice circuit simulation program.

Now effects of diffusion currents can be important at small values
of VGS and so we also consider the simplest model which takes such effects
into account. This is a so-called 'charge-sheet' model due to Brews
(1978) and is derived in Chapter 2. We shall refer to this as the Brews
model.

The methods of optimization used in fitting the model to the data are
described in Morris and Everson (1984). (See also Chapter 3 of this re-
port). Roughly speaking the objective function is taken to be the sum
of squares of the differences between preditted and measured values of
ID and this quantity is to be minimized with respect to the parameters of
the model. The nonlinear optimization is carried out using two different
techniques and in practice these operate in tandem. Each uses a sub-
routine of the IMS library available on VAX. Firstly, a program SARAH
which employs a Gauss-Newton method, is used to obtain a minimum with
respect to some pre-set convergence criterion. The miniumum is con-
straingd to lie within a hyperplane of the parameter space and is chosen
as the deepest arising from a large number of initial 'guesses', so
ensuring as far as possible that the value obtained is a globdl one.

The process tends to be slow so, secondly, a program MOSES, using the
Levenberg-Marquardt algorithm (essentially a hybrid, steepest descent -
Newton scheme) refines this value to a desired (higher) accuracy.

The results obtained by applying the programs SARAH and MOSES to the



three models Ihantola, Spice 2 and Brews are described in detail in
Chapter 4. The chief conclusions indicate that, for Ihantola and Spice 2,
provided the data for VGS=2 is omitted to remove the apparently important
effects of diffusion currents, the accuracy obtained decreases as the
model dimensions decrease although even at the smallest model (1.2 uMs x
2.5 uMs) RMS errors of only a few percent are obtained. The same is true
of the Brews model, with generally a somewhat larger error, but here there
is the important distinction that all VGS values are included. The RMS
errors are generally increased for non-zero values of VBS in the Ihantola
and Spice 2 modeTs: the Brews mode]l was not adapted to non-zero VBS'

The results for the sensitivity of each model on its parameters are
also given in Chapter 4. It is found that each model contains parameters
on which it depends rather critically and others to which it is relatively
insensitive.

Finally, in Chapter 5, an account is presented of our overall ex-
perience in applying the programs SARAH and MOSES. Comparison of perfor-
mance of the different models is given and their strengths and weaknesses,
together with some of the difficulties that were encountered. Suggestions
for fdture development and extension of the parameter extraction technique

are offered.



Chapter 2 MATHEMATICAL MODELS

The clinic has studied three one-dimensional mathematical models of
the MOSFET, the first twa of which are derived directly from that given
by Ihantola and Moll (1964) and discussed in detail in Morris and Everson
(1984). These models neglect diffusion currents and differ only in the
assumed functional form for the effective mobility, Moo and effective
length, Leff’ of the device. We refer to these models as the Ihantola
model and the SPICE 2 model and we summarize below in (a) and (b) their
relevant formulae. An important aspect of all models is the presence of
a number of parameters, P1l, P2,...etc., which are not known accurately
and, as described in Chapter 3, are to be determined for each model by
optimizing the fit of the model to the available empirical data. The
formulae then for the first two models are as follows. (Taken from

Morris and Everson (1984))

(a) Ihantola Model

v
I -P1-p7-—2

= P5. “eff{vs )Vus

25, [¢ 3/2 _ . 3/2
- § P2 [EVDS - Vg * P1) (P2 - Vg) b

provided the drain voltage VDS < VDSAT (the saturation voltage).

When VD < VDSAT
I
DSAT
I T e——— (2)
D Leff
where IDSAT is obtained by substituting

Vo =V

2
=V o - P1-P7 +-(l’-2§)-'{1-E L

(v
D DSAT GS (PZ)Z GS

(3)

- p7-(P2)(P1 )’5+P2(P1-VBS)’2)]’5}



into (1). The seven parameters defined in the Ihantola model, in terms

of physical quantities, are
N

L2,
P1 = 5 £n (n.)
' i
- Y
P2 = (ZKSqNA)
C

OX

P3, P4 = parameters used in defining empirical mobility law, see (4)

PS5 = Cox z
L
P6 = parameter used in defining empirical channel length modulation,
see (5)
P7 = VFB .

In these expressions NA is the p-dopant concentration, n; the intrinsic
carrier concentration, B'l the thermal potential kT/q (k = Boltzmann's
constant, T= temperature, q = electronic charge), Ks the semi-conductor
permittivity, COx the oxide capacitance per unit area, 7 and L the width
and length of the device respectively and VFB'the flatband voltage.

The expression for Mo ff and Leff in this model are chosen to be,
P
-3
1 + P4V -P1-P7-P2/P1)

-
[

e %
off =1 - PGEVDS-VDSM +P1 = Vgo)? - (P - VBS)] (5)



(b) Spice 2 Model

In this model the current in the subsaturation and saturation regions

of drain voltage is still expressed in the form (1) and (2) with VosaT

given by (3). However, different and much more complicated empirical

expressions are assumed for Leff and Haff in terms of the parameters.

There are nine parameters in this model defined by

P2 = NA

P3,P4,P5 = parametefs used in defining mobility, see (7) and (8) ,

P6 = length of channel
P7 = width of channel
P8 =
P9 = (2¢_qN,)%/C

= \exsQp ox °

parameter used in defining channel length modulation, see (9) ,

Thus only P1, P3 and P9 appear directly in the list of parameters used in

the Ihantola model. The gppropriate expressions used for Voff and Leff

are
P3 ,
u = P5
eff P3 x VCRIT
vGS - V1o
P4}«
where VerIT = 9
v

T

and

S _
2qP2

o= PL+ G+ PIe% o

Vae = Vyo <V

6s = V1o < Verrt -
7
Vs = V1o > VeriT ,
(8)
Np

——

n;
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k 4
0.8 x_, L < 0.8x
Loce - D | D (9)
eff * *
L , L >0.8xD
L 1k
V. .-V 2
- * _ (DS "DSAT)
where L = P6 - xD VDS VDSAT + [71 + —15 :I

= -3
Xp ~ 9Pz -
The Spice 2 model has the property that the expressions for the
current and the channel conductance are continuous functions and it is

in a suitable form for adaptation to the SPICE circuit simulation program.
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(c) Brews Model

There are a number of charge sheet models for the MOSFET but perhaps
one of the easiest mo@els to implement is that developed by Brews (1978).
The principal assumption of the charge sheet model is that the current
travels in a surface of zero depth at the interface between the semi-
conductor and the gate insulator. This means the inversion layer is
assumed to have zero thickness.

In Brews (1978) the expression

ID = qZueff N(y)i’i (]0)

dy
is derived for the drain current, where N(y) is the carrier density per
unit area, d¢f/dy is the average quasi-fermi level gradient and the
corrdinate y measures distance along the channel from source to drain.
Brews next approximates d¢f/dy by

do do
f_"'s_14d
Iy - dy g dy (4nN) (11)

where ¢S(y) is the potential along the oxide-silicon interface and it is
the second term on the right hand side which is assumed to take into account

diffusion current effects. Integration of (11) yields

N(y) = No) exp (8 [ og(x) - og(0) | -8 [ 0,(y) - o40) |1 - (12)
On estimating d¢f/dy between (10) and (12) we obtain the result
s (y) ¢/
N(y) = No)exp{ 8 [ o.(y) - 6 (o) 13 - Jp® " [e789s(0)gyo. (13)

KTueee g
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This gives the carrier density in terms of bg and to determine

the electrostatic potential ¢ we have
[\ in gate oxide

v (18)

9 N
e (p NA) in silicon ,

where p = nie°8¢ * B4 is the hole density in the semiconductor. The

charge sheet model then assumes a boundary condition at x = 0 in the

form
ga] ) ﬂ] ]
K K -gN(y) » (15)
ox dx x=0_ s dx x=0,
where x = 0 s the fnterface between oxide and silicon, «__ is the

ox
permittivity of the oxide and x is the coordinate measured positive into

the silicon.

Now in the long channel approximation the solution of the Potsson
equation (14) is simplified by assuming v2¢ = dzo/dxz. Hence, in the

silicon, integration of (14) once yields
1 ,d¢ 2 q n; _
7(g) = (-5 exp (-8 +8oc) - Nio} + constant .
s

If the constant is chosen to satisfy ¢ »o , d¢/dx ~ 0o as x + = and

exponentially small terms are neglected, we obtain for the boundary value

needed in (15),

1.
ks d¢ - :
s dx] x=o, =~ -WNplg [2(seg-11 ,

3
where the Debye length L, = (x_/8qN,) . More simply in the oxide we find
B s A
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a :]
K = -
ox dx <=0 c.. (v

- ox ‘'GS ¢s) .

Hence, the boundary condition (15) becomes,
A
Cox[Vgs0s(¥)1 = aNpLg {2[8efy)-113 + aN(y) . (16)

Thus we have derived two equations (13) and (16) for ¢S(y) and N(y).
Brews (1978) suggests a method of eliminating N(y) to obtain a relation
between I and o5 - First equations(13) and (16) are differentiated
and dN/dy eliminated between them. Then N(y) 1is eliminated from
this result by using (16) agafn. In this way we obtain the expression
2 2 )

u - _ B (e" _
Ip - Zeff P5 { (1+ BvGS ) ( q’sL ?so ) 2 sL ¢so

D=3

3/2 3/2°]
- 22 (B8 =1) = (Bogy-1)

- 1/2 12+
t £ (Bog -1) - (Bog,-1) } s

where the parameters Pi are defined below and bso = ¢S(y=o) and

o = ¢S(yEL) » the source and drain values of the potential respectively.
This is the expression to be used in the Brews model but in the
optimization process the current is required for given specified values
of the drain and gate voltages. This means that in any model evaluation
we must first compute the appropriate values of o - We also note that
the parameters in the model are expressed in exactly the same form as in
the Ihantola model if the same empirical expressions are chosen for Haff

(and Leff if required).



14

Calculation of %o - The condition applied by Brews here is that

¢ should be obtained from the one-dimensional Poisson equation when

4]
VDS = 0 . He ohtains

k
Ves = ¥s0 = ';—,25 [ Bog,-1 + exp(Beg-8P1) 1

if an exponentially small term is neglected. This is implicit in L

for given VGS but we may write the equation in the alternative form
2
= ; 2 : r - . -
Bogo = BPT - 2n (8P2%) + an{[B(Vgg-05o)] /L1 + (Beg-1) /exp(Bs  -8P1) 1} .

Then Brews suggest the following iteration scheme,
(0) =Pl . 2
beo P1 - an(gP2°)/8

é;”) (°) 3 n {[8(Vgs ¢(‘))J /01 + (e¢( ) exp(s¢( Dogen))y
(i20).
It is this scheme which we use for determining $o = ¢S°(VGS) .
Calculation of s After some discussion Brews uses the condition

Bog = Bégg * BVpg 4 40 [N(L)/N(O)] ,

to obtain ¢_, , where N(L) AND N(0) are obtained from (16). Hence ¢
sL sL

is implicity defined for specified VDS by the equation

b ) 1%
6 =0+ Voo ++an B Ugs 05 ) _P2(seg -1) (17)
sbL 0S B I T

8 (VGS'¢so) - P2(8¢so'1)

A straightforward iteration scheme for this equation is

(0) -
%o * Vps °
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Si*1) _ (o) %("cs"’(l)) - PZ(“S)J ) i >0
SRS B p e
B*(Vgg-0g,) - P2(Bo  -1)

but this fails at large vDs because there the numerator of the log term
in (17) tends to zero (near saturation) and hence the perturbation to
¢§E) becomes large. This prompted an investigation into the asymptotic
form of ¢sL for large vDS and equation (i6) shows that its limiting

value ¢* is obtained from
. .
B (Vg - 0 ) - P2(8e -1)%=10 . (18)

More precisely from (17), for large VDs

3 L _ .. -BV _
e‘(vGS ¢SL) - P2(B¢SL-1) =fe "DS * ...,

for some A independent of vDS . This is easily transformed into a

quadratic equation for oL having an appropriate solution in the form,

* o ®os

¢, = ¢ + Be + ...

sL

where B 1is known in terms of A . Substitution of this expression into

(17), written more conveniently as

exp [B("sL'VDs):l =D [:3%("65'%0 - PZ(B¢5L-1);§] ’

where D = esp(3¢so) / l e%(vGS-¢ P2(8¢ -li] » gives the value of
A . We obtain flnalTy [:

By L ) »a:[
AR 2(0"-Vgg) LB (Vggmogy )= P2(8O-1) exp[;(ct* “byr os)_l

sL ] 7 *
v - -
(ZVGS P2™-2¢ )

(19)

where, from (18) , "
2

2
* o P22 P2 2 1
¢ =Vgs*7 7 EPZ + 4lVgs s):l '
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and the negative sign is required because, for example, VGS - ¢* must be
positive from (18).

In applying the model the criteron was selected whereby the asymptotic
expression (19) should be used unless ¢* - ¢so - VDS is greater than some
fixed tolerance (such as -3/8, -4/8 , ... etc.) and this gave satis-
factory results. We chose the same form for Hoff 25 in the Ihantola
model. However, the Brews model is valid in sub-threshold and saturation
regions so it was decided not to include any empirical form of channel
modulation. This has the effect of reducing the number of parameters to

six and in the foregoing it has been assumed that P6 =V Through an

FB *
oversight the parameter VFB (which enters the current through a simple
translation of VGS) was omitted in the model except where it enters
Haff Further modification to remedy this fault and also to include
substrate bias effects (VBS is assumed to be zero in the abovevan1aysis)

are proceeding but are not available for this report



Chapter 3 OPTIMIZATION METHODS

Let P be the parameter vector associated with the models Ihantola (I),
Spice 2 (c) or Brews (b), so that each component of P 1is one of the para-
meters of (I), (S) or (B) respectively. We make the convention that the
i-th component of P corresponds to the i-th parameter as it appears in
either one of the three equations. Recall that for different values of the
gate voltage, VGS’ we are provided with several experimentally obtained
pairs of values of the source to drain current, ID’ versus the drain voltage

VDj ’

o
W n
— —

-

[VDSi’IDi]V

Typically m = 20, n = 4. Therefore to every P we can associate the

GJ

scalar function

2
F(P) = In; = I%. (P
® = 1 1 - 150,

where 151(2) is the model-predicted current at the drain voltage Vos
corresponding to the gate voltage ij' Such a scalar function, F, can be
constructed for each device for which VDS’ ID values are provided and for
each of the three mathematical models of the device response. Qur goal is
to estimate P so that F(P) 1is minimized with P belonging to a set of
physically acceptable vectors. This is recognized as a constrained non-
linear least squares problem in the components of P.

Various iterative methods exist to expedite this minimization or vector-

optimization process. One, called Steepest Descent (McCormick (1983)),

searches for a minimum in the direction of the negative gradient of F(P)
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(a function of several variables decreases most rapidly along the direction
of the negative gradient vector) and then adjusts for step length along this
vector. This process is repeated for each successive iteration. Steepest
Descent is quite stable - convergence is assured; however, convergence is too

slow for practical use. A faster method is Newton's Method (McCormick (1983))

which relies on the Taylor expansion of the error function with respect to

P. A modification of this, known as Gauss-Newton, converges rapidly but

lacks the stability of Steepest Descent (i.e., convergence is not guaranteed).
The algorithm known as Levenberg-Marquardt (Levenberg (1944), Marquardt
(1963), McCormick (1983)) is an interpolation between Gauss-Newton and Steepest
Descent in that search direction and step length are modified simultaneously
For this reason, its stability and rapid convergence inherent from each of

the two previously mentioned methods, Levenberg-Marquardt is recognized to

be one of the most efficient algorithms available. For a more detailed numeri-
cal analysis of the iterative (algebraic) formulation and convergence consi-
derations of these gradient methods see Morris and Everson (1984).

Also described in detail in this report are the two primary programs.
SARAH and MQSES. They use IMSL subroutines invoking the above described
Gauss-Newton and Levenberg-Marquardt methods to expedite the minimization
procedure. SARAH is given a number of initial values or starting points
from which to search over a prescribed hyper-rectangle, S, of the parameter
space. The selection of the extreme points of the hyper-rectangle is guided
by an a priori estimate of the range of the different parameters. SARAH
sifts through the data employing a constrained Gauss-Newton method to Tocate
what is hoped to be the global minimum. The multi-dimensional parameter

space is seeded with minima; by sorting through a wide range of data SARAH
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locates a number of these minima and then selects the deepest as the global
minimum. This, then, is fed to MOSES which uses an unconstrained Levenberg-
Marquardt algorithm to improve upon the convergence and accuracy of the
vector P to minimize the error function F(P). It should be emphasized
that the convergence to such a vector (within a specified tolerance) subse-
quent to the MOSES program does not offer assurance that this indeed is the
global minimum. In fact there is no clear cut way of determining this. More-
over the value of P provided by MOSES may no longer be a vector P be-
longing to the set, S, of acceptable vectors (see Section 5 for a more ex-
tensive discussion of this issue). However, since MOSES improves upon the
constrained minimization provided by SARAH, the minimum obtained, according
to the specified criteria of tolerance, usually lies within S or it is
sufficiently close to it.
Program MOSES stops its search whenever one of the following tolerance
criteria is satisfied:
(a) On two successive iterations-the parameter estimates
agree, component by component, to within a specified
number of significant digits
(b) The norm of the gradient vector is within a specified
tolerance
(c) On two successive iterations the error function F(P)

differs by some prescribed small amount e,
i.e., Fqu)-F@Q < e

The size of the Rqot Mean Square (RMS) error expressed in percentage

terms is chosen as the main accuracy criterion for deciding whether or not
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a given value of P 1is acceptable. Recall that the RMS error is a quantifi-
cation of accuracy based upon an averaging of error distributed over all data

points, say N. The formula for RMS error is given by:

Less than ten percent RMS error from either SARAH or MOSES for a given

device is regarded as a satisfactory result (RMS MOSES < RMS SARAH).



Chapter 4 RESULTS

This chapter is divided into three sections giving the main results for
the three models tested, Ihantola, Spice 2 and Brews respectively. Compari-

sons between the models are presented and discussed in Chapter 5.

(a) THANTOLA MODEL

The Ihantola model provides accurate results, at least when V. # 2

G
and VBS = 0. The accuracy remains surprisingly good even for small MOSFETs.
Table 1 gives the relevant data concernihg the Thantola model.

As anticipated, the RMS error corresponding to devices of greater
channel length and width is substantially less than that associated with
smaller devices. That is to say, accuracy of the mathematical model's fit
to the data (to currents produced experimentally) provided by extraction of
the appropriate estimated parameter vector P, generally increases as the
channel's Tength and width increase. Table 2, extracted from Table 1, con-

firms this result.

Notice that the best fit is usually provided when length/width = 1.
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TABLE 1

RMS ERROR/PARAMETER VALUES

FOR IHANTOLA MODELS

DATA PARAMETTETRS RMS
SET DIM uMs Pl P2 P3 P4 PS5 P6  P7 ERRY
101 - 1.2x.2.5 (S) .40 1.3 1. .50 .014 .051 -.40 5.7
M) 1.2 3.4 1. .11 .0065 .083 -5.0 3.9
102 2.5x2.5 (S) .40 1.1 .61 .17 .0080 .048 -.40 4.6
(M) .95 1.7 .61 .083 .0060 .054 -2.1 4.5
103 1.2 x5.0 (S) .40 1.2 1.2 .50 .036 .049 -.40 7.1
(M) 1.5 3.7 1.2 Ry .017 .087 -6.0 4.9
104 2.5x 5.0 (S) .40 1.1 .75 .22 .020 .044 -.80 4.7
(M) 2.0 2.0 .74 .093 .014 .066 -4.4 4.6
N12 13.5 x 13.5 (S) .45 .81 .93  .036 .0049 .021 .39 0.25
| (M) .59 .84 .93 .036 .0049 .023 .63 0.22
NI13 13.5x 4.5 (S) .40 .87 .67 .033 .0018 .022 -.33 0.30
(M) .36 .86 .67 .033 .0018 .021 -.26 0.31
AN11  3.0x 3.0 (S) .40 1.3 1.1 .18 .0062 .065 -.40 3.2
(M) 1.5 2.3 1.1 .066 .0043 .090 -3.7 1.9
AN12 24.0x 24.0 (S) .41 .88 .65 .040 .0063 .04 -.21 0.24
(M) .40 .88 .65 .040 .0063 .04 -.19 0.24
AN13 3.0 x 24.0 (S) .40 1. .64 .22 .087 .07 -.40 3.2
M) 1.3 21 .62  .086 .06  .094 -3.2 1.9
AN21 2.5 x 2.5 (S) .40 1.1 .60 .17 .0083 .045 -.40 2.8
(M) 1.5 1.9 .60 .078 .0061 .062 -3.2 1.7
AN22 2.5 x 5.0 (S) .40 1.1 .78 .22 .020 .045 -.40 3.2
M) 2. 2. .78 .092 .014 .069 -4.6 1.8
AN23 2.5 x 10.0 (S) .40 .93 .60 .19 .046 .041 -.40 2.1
(M) 1.0 1.3 .60 .13 .039  .052 -1.9 1.5
A1l data for VBS = 0, VG # 2

For SARAH: NSIG = 2 , NSRCH = 100 ,
For MOSES: NSIG = 3 .
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TABLE 2

DATA SET CHL/CH W RMS SARAH/RMS MOSES
101 1.2/2.5 5.7/3.9

102 2.5/2.5 4.6/4.5

AN21 2.5/2.5 2.8/1.7

AN23 2.5/10 2.1/1.5

N13 13.5/4.5 0.30/0.31

N12 13.5/13.5 0.25/0.22

AN12 24/24 0.24/0.24

These above results neglect VG = 2 , which, if included, produces
unacceptable errors (90% RMS or greater). Both non-diffusive models,
IThantola and Spice 2, neglect consideration of this gate voltage in the
scheme of extracting parameters (see Chapter 5 for further discussion).

Another factor influencing accuracy involves the number of initial
values or starting guesses. The SARAH program prompts for specification
of the number of initial values - then distributes these (internal to the
program) as starting points with which to commence the search for minima
over the hyper-rectangle of seven dimensional parameter space. It would
seem intuitively clear that a larger field of initial starting points
would produce greater accuracy in obtaining an optimal parameter estimate;
certainly an increase in the number of starting guesses improves the
probability of locating the global minimum. And whether or not the global

minimum is in fact the minimum SARAH ultimately calculates is not
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particularly relevant. SARAH's process of sifting through the seven
dimensional parameter space in search of a number of minima - then
selecting the deepest as the global minimum - would indicate that a
larger assortment of starting values provides greater flexibility in the
choice of this deepest minimum which is eventually handed over to the
MOSES program. SARAH, however, consumes a great deal of time in the
process of computing the optimal parameter estimate. Our initial selection
of just one starting value necessftated allowing for large blocks of
turnaround computing time. To expedite this process with greater efficiency
data sets for devices of varying channel length and width were run con-
tinuously in batch mode. This avoided having to input each set individually
and wait for long periods of time before running the next set. In this
fashion we were able to obtain the more accurate results from SARAH using
up to 100 initial values.

A sensitivity analysis was performed with respect to each of the
seven parameters of the Ihantola model. If we view our parameter extraction
process as essentially that of best-fitting response curves to experimental
data then in this 1light it is prudent to consider the following situation.
Suppose we have obtained our parameter P enabling minimization of the
error function F(P) and therefore a best-fit of the response curve to
the data. In what way does a small perburbation of just one of the
parameters (Pi, the ith component of the parameter vector P , 1 <i=<7)
effect changes in the accuracy of the response curve's fit to the data?

A graphic analysis provides visual insight to the fashion with which
a ten percent increment and decrement alter the fit of these response

curves, It is found that a +10% perturbation of the first parameter,
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the doping parameter, indicates a rather significant change of the ID'VDS
curve (from the curve with optimal parameter estimates) for gate voltages
of 3, 4 and 5. In this respect we regard Pl as quite sensitive. In
contrast, we find similarly that the same perturbation of the sixth para-
meter, P6 , results in an insignificant change of the response curves
indicative of great insensitivity.

In Figures 3-6 graphs are drawn which provide an illustration of the
model's sensitivity (for two particular data sets at zero substrate bias)
to small perturbations of the seven parameter components. For the data
set corresponding to the long-channel device (24 x 24uMs), P3 and P5 are
found to be the most sensitive; a 10% change (increase and decrease) in
the value of these parameters produces close to 10% RMS error of the model
to experimental data (RMS error for the optimal parameter set was 0.24%.
The effect of such a change in P3 is illustrated in Figure 3. The same
perturbation of P6 , illustrated in Figure 4, seen as the least sensitive
of the parameters, produced 1.25% RMS error. Similarly, for data set AN21
(as an example of a shorter channel device, 2.5 x 2.5 Ms, a 10% increase
and decrease of P7 results in a 15.5% anq 17.3% RMS error - a significant
deviation from the model's best-fit of 1.7% RMS error.

Again, P6 1is seen to be the least sensitive of the seven parameters.
A 10% perturbation of this parameter produces a 1.8% RMS error of the model
to experimental data - less than a 0.01% change from the model's best-fit.
The behavior with respect to these two parameters is depicted in Figures 5
and 6.

Eigenvalues of the Hessian matrix provide further information with
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regard to the sensitivity ana]ysis. However, MOSES failed to output
eigenvaiues consistently for reasons presently not understood. This
question of sensitivity to (or redundancy of) a given component of P
deserves further investigation. Future analysis should aim to provide a
complete picture of this important issue (see Chapter 5 for additional
comments).

Table 2 also compares parameter components, Pl - P7 , (with listed
RMS percentage error) from the optimization of the twelve data sets tested.
Notice that the parameter values for data sets 102 and AN21, two different
experimental sets of data provided for devices of the same dimension (2.5
x 2.5 uMs), closely coincide. Similarly, parameter values for data sets
104 and AN22 (both 2.5 x 5.0 ﬁMs) are roughly equivalent (although the
MOSES estimate of the vector P for data sets 102 and 104 has more than
twice the RMS error than the corresponding parameter estimates for AN21
and AN22 respectively). Examination of the parameter component pertaining
to the capacitance.- P5 , reveals increment of the device's width (i.e.
equal length, varying width) to be proportional to (similarly increasing)
values of this particular parameter. For example, data sets 101 and 103
of dimension 1.2 x 2.5 uMs and 1.2 x 5.0 uMs respectively correspond to
P5 values of .0065 and .017. And data sets 102 and 104 (2.5 x 2.5 uMs
and 2.5 x 5.0 pMs) have P5 values of .0060 and .014. Similarly for
AN21 - AN23 (2.5 x 2.5 ﬁMs, 2.5 x 5.0 uMs, and 2.5 x 10.0 uMs) values pro-

duced are .0061, 014 and .039. And for N13 and N12 (13.4 x 4.5 uMs and
13.5 x 13.5uMs) P5 1is .0018 and .0049. A three-fold increase in the

device's width produces a similar increase in the parameter value
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(consistent with what we might expect on physical grounds).

Finaily, we note that the greatest accuracy of parameter estimation
(i.e. the least RMS error) occurs when VBS = 0. Increasingly negative
VBS ‘values yields greater error and diminished accuracy. Table 3

itemizes Ihantola RMS error for various VBS :

DATA SET Vgs = O(M) Vgs = 2(8) Vg = -2.5(S) Vg = -5(S)
101 3.9

102 4.5

103 4.9

104 4.6

AN 1.9 4.2 13
AN12 .24 82 | N
AN13 1.9 3.9 7.5
AN21 1.7 3.5 7.6
AN22 1.8 4.1 6.5
AN23 1.5 2.3 4.0
N1 2 .22 .68 3.3
N13 .31 .92 5.4
121 | 9.4

122 ‘ 5.2

123 ' 11.0

124 5.6

TABLE 3

RMS percentage errors for the Thantola model for each data set and
different values for Vpo (Vg#2) .
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PARAMETERS
P4

TABLE 4
P3

RMS ERROR/PARAMETER VALUES FOR SPICE 2 MODEL

All data for VBS =0, VG #2
P2

2, NSRCH = 100 ,
3
P1

: NSIG
: NSIG

For SARAH
For MOSES

Length
x Width
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In common with the Ihantola model it was found that large errors arise

from incorporating the VG = 2 data. Hence the RMS errors quoted in this

table all refer to cases with VG = 2 excluded and for V The

Bs = 0 -
general pattern of results follows that for the Ihantola model described

in the previous section. The result for long MOSFETs generally show small
RMS errors and these increase to a maximum for the shorter MOSFETs. A
similar trend with regard to the width of device can be seen from data sets

AN21, AN22, AN23 where for a length (2.5 uMs) the RMS error decreases as

the width increases (see Table 5).

TABLE 5
Variation of RMS percentage error with width for fixed length

L =2.5uMs , VBS =0
DATA W(uMS) RMS (%)
AN21 2.5 : 2.4
AN22 . 5.0 1.9
AN23 10.0 0.92

The Spice 2 model contains nine parameters as described in Chapter 2.
Included in Table 4 are the values of these parameters, extracted to two
significant figures, by programs SARAH and MOSES from the different data
sets. There are two pairs of data sets relating to different devices of
the same dimensions, namely AN22 and 104 (2.5 x 5.0 uMs) and AN21 and 102
(2.5 x 2.5 uMs), but the results show that different RMS errors are ob-
tained for each member of a pair. Moreover, there can be wide variations
in the optimal values of the parameters. In this respect P2 and P8

are particularly noteworthy examples. Now P2 is the doping parameter
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defined by (6) and a wide variation over different devices is under-

standable. However, P8 1is a parameter (V__ ) representing the maximum

max
drift velocity of the carriers and contributes to the channel length
shortening (Vladimirescu.and_Liu(1980) ). The fact that it takes such
widely differing values for similar devices would appear to point to a
shortcoming of the model.

The parameters P6 and P7 , representing the length and width of
the channel respectively, were, on physical grounds, constrained to lie
within +20%0fthe actualdevice dimensions during operation of the program
SARAH. As shown in Table 4 the unconStrained oﬁtimal values predicted by
MOSES are generally close to the SARAH values.

An important parameter is P1 , the flatband voltage VFB ,» and in
all cases this turns out to have a negative value (for VBS = () of
magnetude of 0(1) . In some cases run with VBS = -5 a positive VFB
results.

The effect of changing VBS from zero to different negative values
is summarized in Table 6 (analogous to Table 3 for the Ihantola model),
where RMS percentage errors are quoted from running the SARAH and MOSES
programs with each of the data sets. The same general trend is observed
as before, that the fit of the model to the data becomes less accurate

as  |Vgg] 1is increased.

The sensitivity analysis with respect to the parameters, described in
part (a) for the Ihantola model, was also carried out for the Spice 2
model for the same two data sets for a 'large’ MOSFET (24 x 24 uMs) and a

"small' MOSFET (2.5 x 2.5 uMs). The results are consistent in the sense
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that the most sensitive and the least sensitive parameters are the same
for each size of MOSFET. A sensitive parameter is P9 (coresponding to
the parameter P2 of the Ihantola model) and this is illustrated for both
data sets in Figures 7 and 8. By contrast the model is insensitive to
the parameter P4, occurring in the mobility law, and the associated

graphs are drawn in Figures 9 and 10.

TABLE 6
RMS percenpage errors for the Spice 2 model for each data set and

different values of VBS'(VG # 2).

DATA SET Voe = 0 Voo = =2 v

BS BS BS

101
102
103
104
AN11
AN12
AN13
AN21
AN22
AN23
N12
N13
121
122
123
124
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(C) BREWS MODEL

The principal objective in setting up the Brews model is to create a
model that includes the effects of diffusion current so that the model can
predict drain current for low values of gate voltage. The data with which

we worked had four gate voltages, viz. 2, 3, 4 and 5. With the Ihantola
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and Spice 2 models very puor>fit to the V.. = 2 data prompted us to

GS
exclude these data sets when trying to fit the model to the data. When
this is done a fairly Tow RMS error results. The Brews model is much
better than Ihantola or Spice 2 at finding a fit to data that includes
VGS = 2 but in general does not result in lower RMS error values than
the IhéntoIa and Spice 2 when VGS = 2 is excluded.

As might be expected the Brews model is noticeably longer in terms
of CPU time spent in calculating the optimal parameter set. This is due
primarily to the iteration schemes used to calculate the voltages at the
end points of the charge sheet. Accurate figures are not possible as no
software exists at the time of this work to measure actual CPU time.

A summary-of the results obtained from the Brews model is given in
Table 7 in analogy with Table 1 and Table 4 for the other models. From
Tabhel 7 one fedturé stands out rather strongly, namely that frequently
MOSES gives.iittle.or no fmprovement in the SARAH results. In fact in
two caseé (101, AN13) the RMS error actually increased. This situation
occurred also from time to time in the development phase of the other
models where it was explained in terms of an inconsistent use of the
Libfary routine parameter NSIG ﬁthe number of significant figures to
which the model parameters must agree on successive iterations in order
to stop thé program) but in this case NSIG=2 for SARAH and NSIG=3 for MOSES.
Hence it is expected that the RMS error in MOSES should generally be less
than that in SARAH. -Further numerical experimentation to investigate

this phenomenoh is indicated.
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TABLE 7
RMS ERROR/PARAMETER VALUES FOR BREWS MODEL
DATA
SET DIMuMs . Pl P2 P3 P4 P5 PG RMS ERRY%
101 1.2x2.5 (S) .12 1.2 .72 .49 .022 .49 7.8
(M) .072 1.3 .72 .48 .022 .47 8.5
102 2.5x2.5 (S) .35 .78 .69 .40 .012 -.15 6.1
(M) .17 .91 .70 .21 .0084 -.39 5.4
103 1.2x5.0 (S) .11 1.2 1.1 .48 .035 1.1 8.9
(M) .044 1.2 1.1 .43 .03 .98 8.9
104 2.5x5.0 (S) .15 .89 .80 .25 .022 -.26 5.5
(M) .15 .89 .80 .25 .022 -.26 5.5
N12 13.5 x 13.5 (S) .17 .77 .60 .062 .0086 1.3 2.5
(M) .17 .77 .60 .062 .0086 1.3 2.5
N3 13.5x 4.5 (S) .11 1.2 .61 .47 .0071 -.40 2.4
(M) .22 .70 .60 .060 .0025 -.96 0.94
AN11 3.0 x 3.0 (S) .15 1.1 .79 .18 .0092 -.34 &.6
(M) .15 1.1 .79 .18 .0093 -.36 5.4
AN12 24.0 x 24.0 (S) .28 .76 .82 .060 .0057 -.25 0.56
(M) .28 .76 .82 .060 .0057 -.25 0.56
AN13 3.0 x 24.0 (S) .21 .90 1.2 .19 .037 1.3 5.3
(M) .17 .93 1.2 .17 .036 1.3 5.5
AN21 2.5 x 2.5 (S) .34 .78 1.3 .48 .0073 -.34 5.7
(M) .18 .92 1.3 .25 .0051 -.73 4.6
AN22 2.5 x 5.0 (S) .15 .90 1.1 .26 .017 -.40 4.9
(M) .15 .90 1.1 .27 .017 -.40 4.9
AN23 2.5 x 10.0 (S) .21 .69 1.1 .22 .025 .74 3.6
(M) .21 .69 1.1 .22 .025 .74 3.6

0, VG =2 included
2, NSRCH = 100
3

A1l data for VBS
FOR SARAH: NSIG
FOR MOSES: NSIG



34

We note from Table 7 that data sets for MOSFETs of the same size
have approximately the same RMS error. For example, the data sets 102
and AN21 (2.5 x 2.5 uMs) have RMS errors of 5.4% and 4.6% respectively.
Similar results hold for the 104 and AN22 data sets (2.5 x 5 uMs).
Fufther, note that as the channel width increases for fixed length (data
sets AN21, AN22, AN23) progressively decreasing error are obtained. This
is to be expected as the increasing width would make the one-dimensional
model assumption used in the Brews model more valid.

A sensitivity analysis was performed using the AN12 and AN21 data sets.
Table 8 gives the‘RMS percentage errors which result from a +10% change in

each of the optimal parameters in turn.

TABLE 8

RMS percentage errors for parameter variation of +10% from the optimum

AN12 (RMS=0.56%) AN21 (RMS=4.6%)
MULTIPLIER 0.9 1.1 0.9 1.1
Pl 4.06 3.56 6.05 4.29
P2 6.76 6.04 9.51 6.62
P3 9.92 10.13 9.42 12.76
P4 1.77 1.62 7.84 5.39
P5 9.92 10.13 9.42 12.76
P6 0.60 0.55 5.23 4.38

In Table 8 it can be seen that the most sensitive parameters are 3 and 5
but it is informativé to note that the changed RMS errors are identical
for P3 and P5. The parameter showing the least amount of change is P6
and again we note that increasing the value of P6 results in an improved

RMS error in both the AN12 and AN21 data sets. This is the only place
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where an improvement of fit results from a perturbed parameter.

Again as with the other models the sensitivity results are depicted
graphically. For each data set quoted in Table 8 the fit for +10%
variations in the most sensitive (P5) and least sensitive (P6) parameters
is displayed in Figures 11-14. | |

As mentioned in Chapter 2 (c) the Brews model used here has not been
adapted to include VBS # 0. Further a correction to include flat band

effects more fully should be incorporated into the model.



Chapter 5 CONCLUSION AND DISCUSSION
Three topics are presented in this last chapter.
(a) An overview of the three models used by the team to extract the
relevant parameters of a MOSFET;
(b) Relevant features of the sensitivity problem and trends of all
models w%th kespect to it
(c) Suggested lines of future inquiry on the basis of our team
knowledge of the behaviour of the devices, of the limitations
of the proposed models and of the complexity of the required
numerical investigations.
(a) General Overview
The Ihantola model (as implemented by thé SARAH and MOSES programs)
provides a more accurate estimation of the parameter vector P than
Spice 2. Combaring Tong-channel devfces. we note that corresponding to
dimensions of 24 x 24 uMs, 13.5 x 13.5 uMs and 13.5 x 4.5 uMs the RMS
Ihantola MOSES errors at VBS = 0 are 0.24, 0.22 and 0.31 percent respec-
tively. For Spice 2 the errors are 1.1, 0.67 and 0.78. For the Brews
Charge-Sheet model we have 0.40, 2.5 and 0.94 percent with data at
VGS = 2 included in the parameter extraction. For the two non-diffusive
models, Ihantola and Spice 2, we exclude evaluation at the lowest gate.
Vo]tage since parameter estimates of these two models at this particular
gate voltage increase the RMS error beyond acceptable accuracy (up to 80
and 90 percent). However, comparison exclusive of evaluation at VGS =2
for the non-diffusive models substantiate Ihantola as somewhat more accurate

than Spice 2 also for short channel devices. For example for devices
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of dimensions 1.2 x 2.5 uMs, 2.5 x 2.5 yMs and 2.5 x 5 uMs the respective
IHantola/Spice 2 RMS MOSES errors are 3.9/4.8, 1.7/2.4 and 4.6/4.9 percent.

The conSistency of MOSES improving upon the RMS error of SARAH (as
expected) in all three models is well established {with two unexplained
exceptions for the Brews model, see Chapter 4(c)). However, in some in-
stances MOSES fails to converge (to a particular P) within the set maximum
number of model evaluations (2000); instead, although improving upon SARAH'S
result, iterations exhibit a slow oscillatory type of behavior. When the
routine is interrupted after the oscillatory behavior is observed, the
resulting parameter estimate is well within acceptable accuracy and (as
noted) improves upon the SARAH estimate.

Also, for reasons not understood, eigenvalues of the Hessian
(significant -in ascertaining the sensitivity of a model to a perturbation
of one or more of its parameter's components, see (b) below) frequently
fail to be o;tput in MOSES with no apparent_regularity or consistency in
all of the models tested.

Intrinsic to the SARAH program are the variables NSIG and NSRCH,
NSRCH prompts for a specification of initial values or starting guesses for
SARAH to begin its search over the multi-dimensional parameter space fof
the global minimium. In all three models a larger value of NSRCH produced
greater RMS accuracy. 100 was the typical value specified for NSRCH: a
test with NSRCH equal to 300, however, did not provide greater accuracy.
NSIG is a tolerance criterion that sets the number of significant figures
of each component of P which are required to coincide in two successive

iterations. In Ihantola, Spice 2 and Brews NSIG was set to be 2 for SARAH
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and 3 for MOSES. The improvement of Sarah accuracy gained from setting
NSIG=2 (from previous trials using NSIG=1) demanded in turn more CPU time.
This was true ag@in for all three models incorporated into SARAH and MQSES
as subroutines.

Table 9 compares accuracy (RMS percentage error) of the lhantola and
Spice 2 models at different substrate biases (at Vgs=0s Brews is included).
We can see that an increasingly negative substrate bias produces greater
error and that the Ihantola hodel performs generally better than the

Spice 2 model over all data sets at the VBs values tested.

TABLE 9

Comparative RMS errors for Ihantola, Spice 2 and Brews models
at different substrate biases

Vgs™0 Vgg™-2 Vps™-5

DATA (I) (s) (8) (1) (S) (1) (S)
101 3.9 4.8 8.7

102 4.5 4.8 5.4

103 4.9 6.9 8.9

104 4.6 4.9 5.5

N12 .22 .67 2.5 .68 1.3 3.3 4.0
N13 31 .78 .94 .92 1.5 5.4 5.8
ANT1 1.9 7.4. 5.4 4.2 4.3 12 16
ANY2 .24 1.1 .56 .82 1.6 N 17
AN13 1.9 5.4 5.5 3.9 . 4.0 - 7.7 N
AN21 1.7 2.4 4.6 3.5 4.5 7.6 1
AN22 1.8 1.9 4.9 4.1 3.8 6.5 6.6
AN23 1.6 .92 3.6 2.3 7. 4.0 6.2

(I)=IHANTOLA (S)=SPICE 2 (8)=BREWS
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(b) Sensitivity

An analysis of sensitivity is possible by looking at the eigenvalues
of the Hessian, the matrix of second partial derivatives, of the sum of
squares function at an optimal parameter set.

Let

_N * 2
s@) =z 1@ - 1]

be the sum of squares function where P = (P1,...,Pk) is the k-dimensional

parameter vector. Then a Taylor expansion of S(P) gives
S(P +6P) = S(P) = S(P) + vS(P).6P + (sP)T H(P)&P + o (16P1%)

where H(P) 1is thek x k Hessian matrix, i.e. Hij (P) = aZS/aPian

where Hij(g) is the (i,j) entry in the matrix. Now at a minimal point,

* -
P*, vS(P") = 0. (In our calculations |vs(P")[~ 107"

) which is
much smaller than the typical largest eigenvalue of the Hessian which was
approximately 10']). Using this result we find that

S(" +6P) - S(P*) = (sP)T H &P + o(|cP|?)

Dividing both sides by |6P] , the norm of the perturbing term, we obtain

a formula for the relative change

s(p” + 6%;-' S(B) _ (sp)" H (_P_*)[ f%l] + o(|sP]) - (20
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This result is quite illuminating as the Hessian is first of all a
symmetric reai matrix so that its eigenvalues are all real and the
corresponding eigenvectors are orthogonal. But since gf ijs assumed to
be a minimum of S(P) it follows that all the eigenvalues of H (P)
must be non-negative. If we further assume gf to be an isolated
minimum then eigenvalues are strictly positive and H (P) 1is a positive
definite quadratic form. It then follows that the left hand side of (20)
would take on isolated maxima when &P were an eigenvector and the
maximum values would be %; |(6P);| where (&P); fis an it eigenvector
and \; is its associated eigenvalue. Thus from equation (20) for
|6 P = 1 the maxima would occur at the normalized eigenvectors with
the maximal value as the eigenvalue for that eigenvector. But a more
useful relationship is to see how (20) can be expressed when 6P is just
a change in a single parameter coordinate. . If we have the eigenvectors
and eigenvalues of H (gf) this is a fairly straightforward computation.
For let J denote the matrix whose izb- column is the iEﬁ normalized
eigenvector of H(gf) and let A denote the diagoﬁal matrix whose i—t-h

diagonal element is the ilﬂ eigenvalue. The H(gf) =J A JT Let

6 E?(e) = (0, 0s..05 65 Q5..., §) where O occupies the jfh'position.

TSt v epi(a)) - (8
P’ + 6Pl (e)) - S(P .
Snj(e) = 18] = (62?(6))T\JAJT g

&P ()

where & = ~TeT ° |e|#o .
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Multiplying this right hand side out in detail gives

it M x

Snj(e) = ei

k

So it is seen that the term 32 A J?j
: i=1

the sum of squares function in the jzﬂ coordinate direction.

measures the relative change of

We did experience some difficulty in obtaining the eigenvalues and
eigenvectors of the Hessians in running MOSES with some data sets. The
IMSL subroutine would run into a floating point overflow and the program
would terminate. This occurred in all models. The precise reason for
this was not found but it is suspected that the smallest eigenvalue may
have been too small for the precision of the machine. Another possibility
is that the condition number, which is the ratio of the largest to the
smallest eigenvalue, is too large, resulting in numerical instability in

the calculation of the eigenvectors and their associated eigenvalues.

(c) Suggestions for future work

As a result of the experience gained from the clinic's work on the
parameter extraction process for the MOSFET device several directions in
which further investigations could usefully be made become apparent.
Some of these correspond to relatively simple variations in the conditions
under which the programs are run: there was insufficient time for the
team to include these in its work. Others involve more major excursioné
into different aspects of MOSFET modelling. We outline our views on

these matters under separate headings below.




(i) Role of Vas

It is known that the operation of a MOSFET depends critically upon
the nature of the inversion layer: upon how many carriers are in it,
upon their mobiiity, etc. Therefore for an accurate description of how
the MOSFET works we need the inversion layer carrier density per unit
area Ne .

The effect of body-to-source reverse bias, VBs » ON Ne at fixed
gate-to-source bias is a reduction in 9N, - Therefore a larger gate bias
will be needed to cause inversion.

It does not seem that this feature of the MOSFET is properly re-
presented in the Ihantola and Spice 2 models and this indicates why the
RMS error increases to unacceptable levels when they are used to fit data
with body-to-source bias of -2 and -5 . (see Table 9).

It should be possible to include VBS in these models in a more
realistic way, .so that the accuracy of the parameter extraction process

will not be affected by necessary changes in 'VBS .

(ii) Weighting and CLEAK

The programs SARAH and MOSES possess the facility for giving more
weight to some data points're1ative to others in optimising the sum of
squares. In all cases run by the clinic equal weight was attached to all
data points. Similarly a parameter CLEAK is chosen for each operation
of the program, and is defined by

. = Mmax .
dj = max ([15] . CLEAK)

J']ooa

where dj appears in the sum of squares,




* 2
N IL(P)-I,
s*(p) = zw(—l——d) ,

wj is the weighting factor and N 1is the number of data points. Thus
by appropriately choosing CLEAK, S* can be made to denote a relative

sum of squares, an absolute sum of squares or a mixture of the two. The
choice of CLEAK in the clinic's work was such that dj =1.

Now it was found that much improvement of fit is obtained in the
IThantola and Spice 2 models if the data for vGs = 2 is excluded. Further,
the fit tends to be worse for lower values of VDS . It may be that
these problems could be tackled by varying the w; SO that Tow VDS
and vGS values carry greater weight'than others. Similar advantages may
be gained by altering the CLEAK parameter although we note, as mentioned
in Morris and Everson (1984), that at very low currents it is more appro-

priate to use the absolute sum of squares to avoid very large errors. It

is recommended that this area be investigated.

(iii) Role of constraints
The constraints on the parameters, imposed in the SARAvarogram,'can be

adjusted and the chosen limits can have an important effect on the running
of the program. Over-relaxed constraints can produce estimated parameters
from SARAH which make the results from the MOSES program less predictable.
Iﬁ extreme cases, the model evaluation may fail due, for example, to nega-
tive squaré roots occurring. Such modifications are associated with the
choice of the parameter NSRCH in SARAH (number of starting points) and a

systematic study of the effect of variation of constraints and NSRCH
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would be of interest. In fact, NSRCH is the only control that one has
in finding the global minimum and repetition of results for two values
of this parameter (differing say by a factor two) was taken as satisfactory
evidence that the global minimum had in fact been attained in the search
area. This procedure was only carried out in a few cases, however.

The related question of choosing ‘realistic' values of parameters is
also important. For example, P6 and P7 1in the Spice 2 model (length
and width parameters) were constrained to be within +20% of the device
measurements and the resulting predictions led MOSES to an improved fit
of the model.to the data. In other cases the choice is much less clear

cut and the parameter VFB seemed particularly difficult to estimate.

(iv) Non-convergence

It was found on a number of data sets that Ihantola and Spice 2
would not converge-using the MOSES program. What seemed to occur was
that the algorithm was causing certain parameters to oscillate slowly
around a closed orbit. It would be worthwhile to obtain a clear analysis
of the weakness of the Levenberg-Marquardt algorithm in its application to

this problem.

(v} Other models

The clinic concentrated on three one-dimensional models of the more
straightforward type. ‘No study was made of more elaborate models such as
the Pao-Sah model or possibly two-dimensional models. These are computa-

tionally expensive models but are expected to be more accurate. An
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analysis of these models might well pay dividends in a more complete
understanding of the device behaviour as well as showing more explicitly

the limitations of the one-dimensional models which were studied.

(vi) Inverse theory

There is a branch of mathematics that is concerned with the analysis
of parameter estimation problems (as well as inverse eigenvalue problems,
inverse scattering problems and many others). Our problem, of MOSFET
parameter estimation, has its most general formulation in terms of this
theory. It is possible that framing the problem within such a formulation
could produce some practical results. From preliminary literature searches
no publications were located on this topic in spite of the fact that
numerous applications of this theory in other engineering disciplines
have met with some success. An attempt to accomplish this analysis will
be made by a member of the clinic over the summer of 1985 and results,

if any, will be made available to.those who might be interested.




1)

2)

3)

4)

5)

6)

7)

8)
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LERRATUM
The results obtained in the Brews model (Model 6) assumed an incorrect

dependence on the parameter VFB‘ "Necessary corrections amount to replacing

vGS by VGS - VFB everywhere after label 501 in SUBROUTINE BREWS (nine

substitutions).





